List of battery sizes

This article lists the sizes and shapes of some common primary and secondary battery types in household and light industrial use.

The long history of disposable dry cells means that many different manufacturer-specific and national standards were used to designate sizes, long before international standards were reached. Technical standards for battery sizes and types are published by standards organizations such as International Electrotechnical Commission (IEC) and American National Standards Institute (ANSI). Popular sizes are still referred to by old standard or manufacturer designations, and some non-systematic designations have been included in current international standards due to wide use.

The complete nomenclature for the battery will fully specify the size, chemistry, terminal arrangements and special characteristics of a battery. The same physically interchangeable cell size or battery size may have widely different characteristics; physical interchangeability is not the sole factor in substitution of batteries.

A battery may consist of a single cell or two or more cells in a single package, such as the 2CR5 (two lithium cells) or a 4LR44 (four alkaline LR44 cells), or a 1604 9-volt battery which has six cells.

Contents

Standardization

The current IEC standards for portable primary (non-rechargeable) batteries bear the 60086 number. The relevant US standards are the ANSI C18 series. These standards are developed by a committee of the National Electrical Manufacturers Association (NEMA).

Both standards have several parts covering general principles, physical specifications and safety. Designations by IEC and ANSI standards do not entirely agree, although harmonization is in progress. Manufacturers further have their own systematic identification of cell types, so cross-reference tables are useful to identify equivalent types from different manufacturers. [1]

Battery chemistry

The terminal voltage of a battery depends on the chemicals and materials used in its construction, and not on its physical size. For example, primary (non-rechargeable) alkaline batteries have a nominal voltage of 1.5 volts. Rechargeable NiCd (nickel cadmium) and NiMH (nickel metal hydride) typically output 1.25 volts per cell. Devices intended for use with primary batteries may not operate properly with these cells, given the reduction in voltage. Mercury batteries, no longer common, had stable terminal voltages around 1.35 volts.

The full battery designation identifies not only the size, shape and terminal layout of the battery but also the chemistry (and therefore the voltage per cell). For example, a CR123 battery is always LiMnO2 ('lithium') chemistry, in addition to its unique size.

The following tables give the common battery chemistries for the current common sizes of batteries. See Battery Chemistries for a list of other electrochemical systems.

Non-standard brand-specific names

Manufacturers may assign proprietary names and numbers to their batteries, disregarding common, colloquial, IEC, and ANSI naming conventions (see LR44 battery as an example). Often this is done to steer customers towards a specific brand, and away from competing or generic brands, by obfuscating the common name. For example, if a remote control needs a new battery and the battery compartment has the label, "Replace with CX472 type battery," many customers will buy that specific brand, not realizing that this is simply a brand name for a common type of battery. For example, British standard U series were often sold under manufacturer prefixes such as "C" "SP" "HP" etc.; Ever Ready sold "U2" (D) batteries as "SP2" (standard-duty zinc carbon) and "HP2" (heavy duty zinc chloride).

On the other hand, with obscure battery types, the name of a specific brand will sometimes become the most common name for that battery type, as other manufacturers copy or modify the name so that customers recognize it.

Common consumer batteries

Round batteries

These are all single-cell round batteries with height greater than their diameter. In zinc-carbon or alkaline types they produce around 1.5 volts per cell when fresh. Other types produce other voltages per cell (as low as 1.2 volts for rechargeable nickel-cadmium, up to around 3 volts for lithium/manganese dioxide). The cylindrical form has a positive nub terminal at the cap of the cell, and the negative terminal at the bottom of the can; the side of the can is not used as a terminal.

Most Common
Name /
Image
Other
Common
Names
IEC
Name
ANSI/NEDA
Name
Typical Capacity
(mAh)
Dimensions [mm]
Diameter x Height
Comments
AAA
U16 (In Britain until the 1980s)
Micro
Microlight
MN2400
MX2400
Type 286 (Soviet Union/Russia)
UM 4 (JIS)[2]
#7 (China)
6135-99-117-3143 (NSN)[3]
LR03 (alkaline)
R03 (carbon–zinc)
FR03 (Li–FeS2)
HR03 (NiMH)
KR03 (NiCd)
ZR03 (NiOOH)
24A (alkaline)
24D (carbon–zinc)
24LF (Li–FeS2)
1200 (alkaline)
540 (carbon–zinc)
800–1000 (NiMH)
10.5 x 44.5 Introduced 1911, but added to ANSI standard in 1959
AA
U7 (In Britain until the 1980s)
Pencil-sized
Penlight
Mignon
MN1500
MX1500
Type 316 (Soviet Union/Russia)
UM 3 (JIS)
#5 (China)
6135-99-052-0009 (NSN)(carbon-zinc)
6135-99-195-6708 (NSN)(alkaline)[3]
LR6 (alkaline)
R6 (carbon–zinc)
FR6 (Li–FeS2)
HR6 (NiMH)
KR6 (NiCd)
ZR6 (NiOOH)
15A (alkaline)
15D (carbon–zinc)
15LF (Li–FeS2)
1.2H2 (NiMH)
1.2K2 (NiCd)
2700 (alkaline)
1100 (carbon–zinc)
3000 (Li–FeS2)
1700–2900 (NiMH)
600–1000 (NiCd)
14.5 x 50.5 Introduced 1907, but added to ANSI standard sizes in 1947
C
U11 (In Britain until the 1980s)
MN1400
MX1400
Baby
Type 343 (Soviet Union/Russia)
BA-42 (US Military Spec WWII–1980s)
UM 2 (JIS)
#2 (China)
6135-99-199-4779 (NSN)(carbon-zinc)
6135-99-117-3212 (NSN)(alkaline)[3]
LR14 (alkaline)
R14 (carbon–zinc)
FR14 (Li-FeS2)
HR14 (NiMH)
KR14 (NiCd)
ZR14 (NiOOH)
14A (alkaline)
14D (carbon–zinc)
8000 (alkaline)
3800 (carbon–zinc)
4500–6000 (NiMH)
26.2 x 50 Can be replaced with alkaline AA cell using plastic sabot (stub case)
D
U2 (In Britain until the 1980s)
Flashlight Battery
MN1300
MX1300
Mono
Type 373 (Soviet Union/Russia)
BA-30 (US Military Spec WWII–1980s)
UM 1 (JIS)
#1 (China)
6135-99-464-1938 (NSN)(carbon-zinc)
6135-99-109-9428 (NSN)(alkaline)[3]
LR20 (alkaline)
R20 (carbon–zinc)
FR20 (Li-FeS2)
HR20 (NiMH)
KR20 (Ni-Cd)
ZR20 (NiOOH)
13A (alkaline)
13D (carbon–zinc)
12000 (alkaline)
8000 (carbon–zinc)
2200–12000 (NiMH)
34.2 x 61.5 Introduced 1898 as the first flashlight battery.

Non-round batteries

Most Common
Name /
Image
Other
Common
Names
IEC
Name
ANSI/NEDA
Name
Typical Capacity
(mAh)
Nominal
Voltage
Terminal layout Dimen-
sions
[mm]
Comments
4.5-Volt
Pocketable Battery
1203
4.5 V
Type 3336 (Soviet
 Union/Russia)
6135-99-738-4038 (NSN)[3]
3LR12 (alkaline)
3R12 (carbon‑zinc)
MN1203 (manganese) 6100 (alkaline)
1200 (carbon‑zinc)
Alkaline
Carbon‑Zinc:

4.5 V (3 cells)
Two 6...7 mm wide metal strips
(+) Shorter strip
(−) Longer strip
H: 67
L: 62
W: 22
This battery is most common in Europe and Russia.
In Switzerland as of 2008, 4.5-volt lantern batteries
accounted for 1% of primary battery sales.[4]
9-Volt
PP3
Radio battery
Smoke Alarm (UK)
MN1604
Square battery
Krona (Soviet
 Union/Russia)
Transistor
6135-99-634-8080 (NSN)[3]
6LR61 (alkaline)
6F22 (carbon‑zinc)
6KR61 (NiCd)
6HR61 (NiMH)
1604A (alkaline)
1604D (carbon‑zinc)
1604LC (lithium)
7.2H5 (NiMH)
11604 (NiCd)
1604M (mercury,
 obsolete)[5]
565 (alkaline)
400 (carbon‑zinc)
1200 (lithium)
175–300 (NiMH)
120 (NiCd)
500 (lithium polymer
 rechargeable)
580 (mercury,
 obsolete)
Alkaline
Carbon‑Zinc:

9 V (6 cells)
Lithium:
9 V (3 cells)
NiMH / NiCd:
7.2, 8,4 or 9.6 V
(6, 7 or 8 cells)

[6]

Both on same end
(+) male clasp
(−) female clasp
H: 48.5
L: 26.5
W: 17.5
Added to ANSI standard in 1959
Lantern (Spring)
Lantern
6 Volt
Spring Top
MN908 (UK)
996 or PJ996
Energizer 529
6135-99-910-1145 (NSN)[3]
4LR25Y (alkaline)
4R25 (carbon‑zinc)
908A (alkaline)
908D (carbon‑zinc)
26000 (alkaline)
10500 (carbon‑zinc)
Alkaline
Carbon‑Zinc:

6 V (4 cells)
Springs Top
(+) Corner spring
(−) Centre string
H: 115
L: 68.2
W: 68.2
Spring terminals.

Less common batteries

These types are not as likely to be found in consumer applications and may be specialized for photographic, instrumentation or other purposes. Some cell sizes are used only as elements of multi-cell batteries.

Round single-cell

These are all single-cell round batteries with a height greater than their diameter. In carbon-zinc or alkaline types they produce around 1.5 volts per cell when fresh. Other types produce other voltages per cell (as low as 1.2 volts for rechargeable nickel-cadmium, up to around 3 volts for lithium/manganese dioxide). The cylindrical form has a positive nub terminal at the cap of the cell, and the negative terminal at the bottom of the can; the side of the can is not used as a terminal when these cells are sold as individual units for consumer use.

Image Most
Common
Name
Other
Common
Names
IEC
Name
ANSI/NEDA
Name
Typical Capacity
(mAh)
Dimensions
Diameter x Height (mm)
Comments
1/2AA SAFT LS14250
Tadiran TL5101
UL142502P
CR14250 (Li‑MnO2) 3V
ER14250 (Li‑SOCl2) 3.6V
850–1200 14.5 × 24 Same diameter as AA battery, used in small electronics, including pulse oximeters, as well as use in some computer models (such as the Power Mac G4 and some older IBM PC compatibles) as the CMOS battery
AAAA MX2500
Mini
UM 6 (JIS)
LR8D425 (alkaline)
25A (alkaline) 625 (alkaline) 8.3 x 42.5 Sometimes used in 'pen flashlights', calculators, fishing lures, or electronic glucose meters.
A R23 (carbon‑zinc)
LR23 (alkaline)
17 x 50 More common as a NiCd or NiMH cell size than a primary size, popular in older laptop batteries and hobby battery packs.
Various fractional sizes are also available e.g. 4/5 A.
B U10 (UK, pre‑1980s)
336 (Russia)
R12 (carbon‑zinc)
LR12 (alkaline)
8350 (alkaline) 21.5 x 60 Most commonly found within a European 4.5 volt lantern battery.
Not to be confused with the vacuum tube B battery.
F R25 (carbon‑zinc)
LR25 (alkaline)
60 10500 (carbon‑zinc)
26000 (alkaline)
33 x 91 Four "F" Cells are often found within 6 volt rectangular lantern batteries.
N Lady
MN9100
UM-5 (JIS)
E90
6135-99-661-4958 (NSN)[3]
LR1 (alkaline)
R1 (carbon‑zinc)
HR1 (NiMH)
KR1 (NiCd)
910A (alkaline)
910D (carbon‑zinc)
800–1000 (alkaline)
400 (carbon‑zinc)
350–500 (NiMH)
12 x 30.2 Rechargeable nickel-cadmium and nickel-metal hydride are far less common than other rechargeable sizes.[7]
Mercury batteries of the same dimensions are no longer manufactured.
No. 6 Ignition Cell,
6135-99-114-3446 (NSN)[3]
R40 905 35000–40000
 (carbon‑zinc)
67 x 172 Typical modern uses include school science experiments, and starting glow plug model engines. Formerly used for alarms, bell ringing, ignition systems, telephones.[1]
Terminals are screw posts with a maximum diameter of 4.2 mm.
+ centre, - edge.
Sub-C Type 323 (Soviet
 Union/Russia)
KR22C429 (NiCd)
HR22C429 (NiMH)
1200–2400 (NiCd)
1800–5000 (NiMH)
22.2 × 42.9 A common size for cordless tool battery packs. This size is also used in radio-controlled scale vehicle battery packs.
1/2-, 4/5- and 5/4-sub-C sizes (differing in length) are also available.

Round multiple cell

Image Most
Common
Name
Other
Common
Names
IEC
Name
ANSI/NEDA
Name
Typical Capacity
(mAh)
Nominal Voltage (V) Dimensions
Diameter x Height (mm)
Comments
A23 V23GA
23A
23AE
MN21
L1028
8LR23
LRV08
8LR932 (alkaline) 1181A (alkaline) 55 (alkaline) 12 10.3 x 28.5 Used in small RF devices such as key fob-style garage door openers and keyless entry systems where only infrequent pulse current is used.
Often enclosed like a normal battery but sometimes simply a stack of eight LR932 button cells shrink wrapped together.
A27 GP27A
MN27
L828
27A
22 (alkaline) 12 8 x 28 Used in small RF devices such as car alarm remote controls. Can also be found in some cigarette lighters.
Duplex Ever Ready No. 8 2R10 3 21.8 × 74.6 Internally contains two 1.5 V cells hence the nickname 'Duplex'
In Switzerland as of 2008, 2R10 batteries accounted for 0.003% of primary battery sales.[8]
4SR44 PX28A
A544
K28A
V34PX
4LR44 (alkaline) 110–150 (lithium)
170‑200 (silver‑oxide)
6.2 (lithium)
6.5 (silver‑oxide)
13 x 25.2 Used in film cameras, blood glucose meters, medical instruments, dog training devices.
523 PX21 3LR50 1306A 580 (alkaline) 4.5 17.1 x 49.9 Used in cameras and Apple Macintosh computers (such as the 128K through 512K and similar).
531 PX19 3LR50 1307AP 580 (alkaline) 4.5 17.1 x 58.3 A 523 with snap connectors attached to either end. Used in some older cameras e.g. Polaroid packfilm.

Non-round multiple cell

Image Most
Common
Name
Other
Common
Names
IEC
Name
ANSI/NEDA
Name
Typical Capacity
(mAh)
Nominal Voltage (V) Terminal layout Dimensions Comments
J 7K67  4LR61 (alkaline) 1412A (alkaline) 625 (alkaline) 6 6.5 mm² flat contacts,
− top side,
+ missing corner
H 48.5 mm
L 35.6 mm
W 9.18 mm
Typically used in applications where the device in question needs to be flat, or where one should not be able to insert the battery in reverse polarity, such as a blood glucose meter or blood pressure cuff. Also good for elderly persons, due to its large size.
Often contains 4 LR61 cells which are similar to and often interchangeable with AAAA cells.
Lantern (Big) 918
R25-2
Big Lantern
Double Lantern
MN918
Energizer 521
4R25-2
4LR25-2
918A 22000 (carbon‑zinc)
52000 (alkaline)
6 Screw posts on top of the battery.
Only marked, no physical keying for polarity.
Maximum diameter of the posts is 4.2 mm.
H 125.4 mm
L 132.5 mm
W 73 mm
For use in locations susceptible to high vibration/shock where connectors may be knocked off the terminals.
Lantern (Screw) Lantern
6 Volt
Screw Top
6135-99-645-6443 (NSN)[3]
4LR25X (alkaline)
4R25X (carbon‑zinc)
915A (alkaline)
915 (carbon‑zinc)
26000 (alkaline)
10500 (carbon‑zinc)
6 Screw Posts Top,
+ Corner,
− Centre
Maximum diameter of the posts is 3.5 mm.
H 109.5 mm
L 66.7 mm
W 66.7 mm
For use in locations susceptible to high vibration/shock where connectors may be knocked off the terminals.
Lantern (Spring) See Lantern (Spring), above

PP series

The PP (Power Pack) series was manufactured by Ever Ready in the UK (Eveready in the US) and designates multi-cell carbon-zinc batteries. The batteries were used for portable electronic devices. Most sizes are uncommon today, however the PP3 size is readily available. [9][10] The PP4 was cylindrical, all other types were rectangular. Most have snap terminals as seen on the common PP3 type.

Image PP series Other
Common
Names
Typical Capacity
(mAh)
Nominal Voltage (V) Dimensions Comments
PP1 6 H 55.6 mm
L 65.5 mm
W 55.6 mm
This battery had 2 snap connectors.
They were spaced 35.0 mm apart.
PP3 See 9-volt, above
PP4 226
NEDA 1600
IEC 6F24
9 H 50.0 mm
Ø 25.5 mm
PP6 246
NEDA 1602
6135-99-628-2361 (NSN)[3]
IEC 6F50-2
850 9 H 70.0 mm
L 36.0 mm
W 34.5 mm
Centre distance between terminals is max 12.95 mm with both offset 7 mm nominal from the wider battery edge.
Mass is 120 g.[3]
PP7 266
NEDA 1605
6135-99-914-1778 (NSN)[3]
IEC 6F90
2500 9 H 63 mm
L 46 mm
W 46 mm
Centre distance between terminals is max 19.2 mm.
Mass is 200 g.[3]
PP8 SG8
Fencer
6 H 200.8 mm
L 65.1 mm
W 51.6 mm
This battery typically had 2 snap connectors however 4 connector versions are available.
They were spaced 35.0 mm apart.
This type of battery is sometimes used in electric fencing applications.
PP9 276
NEDA 1603
6135-99-945-6814 (NSN)
[3]
IEC 6F100
5000 9 H 81.0 mm
L 66.0 mm
W 52.0 mm
This battery had 2 snap connectors.
They were spaced 35.0 mm apart.
PP10 9 H 226.0 mm
L 66.0 mm
W 66.0 mm
This battery had 2 pin connectors.
They were a single ⌀3.2 mm negative pin and a single ⌀4.0 mm positive pin spaced 13.0 mm apart.
PP11 4.5 + 4.5 H 91.3 mm
L 65.1 mm
W 52.4 mm
This battery had 4 pin connectors. 9V was available by wiring in series.
There were two ⌀3.2 mm negative pins spaced 9.5 mm apart and two ⌀4.0 mm positive pins spaced 14.3 mm apart.
Negative and positive pins were spaced 18.1 mm apart.

Camera batteries

Digital and film cameras often use specialized primary batteries to produce a compact product. Flashlights and portable electronic devices may also use these types.

Image Most
Common
Name
Other
Common
Names
IEC
Name
ANSI/NEDA
Name
Typical Capacity
(mAh)
Nominal Voltage (V) Shape Terminal layout Dimensions Comments
CR123A Camera Battery
123
CR123
17345
16340
CR-123A
6135-99-851-1379 (NSN)[3]
CR17345 (lithium) 5018LC (lithium) 1500 (lithium)
700 (Li–ion rechargeable)
3 (lithium)
3.6 (Li-ion)
Cylinder + Nub cylinder end,
− Flat opposite end
H 34.5 mm
Ø 17 mm
A lithium primary battery, not interchangeable with zinc types.
A rechargeable lithium-polymer version is available in the same size and is interchangeable in some uses.
In Switzerland as of 2008, these batteries accounted for 16% of lithium camera battery sales.[8]
CR2 15270 (Li-Ion Rechargeable)
6135-99-606-3982 (NSN)[3]
CR17355 5046LC 750 (lithium) 3 (lithium)
3.6 (Li-ion)
Cylinder + Nub cylinder end,
− Flat opposite end
H 27 mm
Ø 15.6 mm
Standard Discharge Current: 10 mA
A common battery type in cameras and photographic equipment.
In Switzerland as of 2008, these batteries accounted for 6% of lithium camera battery sales.[8]
2CR5 EL2CR5
DL245
RL2CR5
6135-99-577-2940 (NSN)[3]
2CR5 5032LC[11] 1500 6 Double cylinder.
Keyed.
Both on one end.
Terminal centre spacing 16 mm.
H 45 mm
L 34 mm
W 17mm
Commonly used in film and digital cameras. Shaped so that it can be inserted into a battery compartment only one way.
In Switzerland as of 2008, these batteries accounted for 1% of lithium camera battery sales.[8]
CR-P2 BR-P2
223A
CR17-33
5024LC
CR-P2 5024LC[12] 1500 6 Double cylinder. Keyed. Both on one end.
Terminal diameter: 8.7 mm.
Terminal centre spacing: 16.8 mm.
H 36 mm
L 35 mm
W 19.5 mm
Shaped so that it can be inserted into a battery compartment only one way.
Typical mass 37 g.
They contain two 3V batteries which can be used in place of CR123 batteries.
CR-V3 CRV3
RCR-V3 (Li-ion)
5047LC
5047LF (primary)[13]
3000 (lithium)
1300 (Li-ion)
3 (lithium)
3.6 (Li-ion)
Double cylinder flat pack.
Keyed.
Both on one end H 52.20 mm
L 28.05 mm
W 14.15 mm
The same size as two R6 (AA) cells side by side. A rechargeable type also is also made in this size.
May be used in some devices not explicitly designed for CR-V3, especially digital cameras.

Button / coin / watch / micro / miniature cells

Lithium cells

Coin-shaped cells are thin compared to their diameter. The metal can is the positive terminal, and the cap is the negative terminal.

The IEC prefix "CR" denotes lithium manganese dioxide chemistry. Since LiMnO2 cells produce 3 volts there are no widely available alternate chemistries for a lithium coin battery. The "BR" prefix indicates a round lithium/carbon monofluoride cell. See lithium battery for discussion of the different performance characteristics. One LiMnO2 cell can replace two alkaline or silver-oxide cells.

All these lithium cells are rated nominally 3 volts (on-load), with open circuit voltage about 3.6 volts. Manufacturers may have their own part numbers for IEC standard size cells. The capacity listed is for a constant resistance discharge down to 2.0 volts per cell.[14]

IEC 60086
designation
ANSI C18
/NEDA designation
Typical Capacity
mAh
Standard discharge
current
mA
Dimensions
(mm)
Diameter x Height
Comments
CR927 30  9.5 × 2.7 This obscure type of lithium coin cell is used extensively in blinkies.
CR1025 5033LC 30  0.1 10 × 2.5
CR1216 5034LC 25  0.1 12.5 × 1.6
CR1220 5012LC 35–40 0.1 (CR)
0.03 (BR)
12.5 × 2.0
CR1225 5020LC 50  0.2 12.5 × 2.5 Maximum discharge current: 1 mA. Maximum pulse discharge current: 5 mA.
CR1616 50–55 0.1 16 × 1.6
CR1620 5009LC 75–78 0.1 16 × 2.0
CR1632 140 
120 (BR)
0.1 (CR)
0.03 (BR)
16 × 3.2
CR2012 55  0.1 20 × 1.2
CR2016 5000LC 90  0.1 (CR)
0.03 (BR)
20 × 1.6 Often used in pairs instead of CR2032 for devices that require more than 3 V, like blue/white LED flashlights.
CR2025 5003LC 160–165 0.2 20 × 2.5
CR2032 5004LC 225 (CR)
190 (BR)
0.2 (CR)
0.03 (BR)
20 × 3.2 Maximum discharge current: 3 mA. Maximum pulse discharge current: 15 mA.
CR2320 110–175 [15] 23 × 2 3V
CR2325 165–210 23 × 2.5 3V
CR2330 265 
255 (BR)
0.2 (CR)
0.03 (BR)
23 × 3.0
CR2354 560  0.2 23 × 5.4
CR2430 5011LC 270–290 24.5 × 3.0
CR2450 5029LC 610–620  24.5 × 5.0 Portable devices requiring high current (3.0 mA) and long shelf life (up to 10 years)
CR2477 1000  0.2 24.5 x 7.7
CR3032 500–560
500 (BR)
0.1 (CR)
0.03 (BR)
30.0 × 3.2
CR11108 160 11.8 x 11 Also called CR1/3N because it is one third the height of an alkaline N cell, and a stack of three of them will form a battery with the same dimensions as an N cell but with 9 V terminal voltage. Such 9 V batteries in a single package do exist but are rare and only usually found in specialist applications. Such a battery can be referred to as 3CR1/3N. However 2CR1/3N, a 6V battery consisting internally of a stack of two CR1/3N is sold by Duracell, Energizer and others.

Silver oxide and alkaline cells

SR/LR/AG/SG Button Cells: IEC SR series batteries are silver oxide chemistry and provide 1.55 volts, while IEC LR series batteries are alkaline chemistry and provide 1.5 volts. Similarly, SG prefix batteries are the silver oxide chemistry version of the alkaline AG prefix. Since there are no 'common' names beyond the AG designation, many vendors use these four designations interchangeably for the same sized cell, and they will all fit and work. The only difference is that silver oxide chemistry typically has 50% greater capacity than alkaline chemistry and usually a flat discharge characteristic (constant voltage), while the voltage of an alkaline battery decreases with use; and alkaline batteries are cheaper than silver. The capacity of a silver battery may be twice that of an alkaline. For devices which require a steady voltage such as photographic light meters and those which fail to operate below a certain voltage—some digital callipers do not work below 1.38V— a silver cell with flat discharge characteristic is indicated. Inexpensive devices are sometimes supplied fitted with alkaline batteries, though they would benefit from silver.

Round button cells have heights less than their diameter. The metal can is the positive terminal, and the cap is the negative terminal. Button cells are commonly used in electric watches, clocks, and timers. IEC batteries that meet the international IEC 60086-3 standard for watch batteries [16] carry a "W" suffix. Other uses include calculators, laser pointers, toys, LED "blinkies", and novelties.

IEC designation numbers indicate the physical dimensions of the cell. For cells less than one centimeter in height, the hundreds digits are the diameter in millimeters, while the last two digits are the height in tenths of millimeters. Taller cells get five digit numbers where the thousands digits are the diameter in millimeters, and the last three digits are the height in tenths of millimeters.

Sizes are shown for the silver-oxide IEC number; types and capacity are identified as (L) for alkaline and (S) for silver-oxide. In some cases, sizes which originally were distinct are now considered interchangeable. E.g., the 189/389 cell is 3.1 mm high and was designated 1131, while the 190/390 size is 3.0 mm high and was designated 1130, but these sizes are no longer distinguished.

Most
Common
Name
Other
Common
Names
IEC
Name
ANSI/NEDA
Name
Typical Capacity
(mAh)
Dimensions
(mm)
Diameter x Height
Comments
SR41 AG3/SG3
LR41
192/384/392
6135-99-949-0402 (NSN)(S)[3]
LR736 (L)
SR736 (S)
1135SO (S)
1134SO (S)
25–32 (L)
38–45 (S)
7.9 × 3.6
SR43 AG12/SG12
LR43
186/301/386
6135-99-547-0573 (NSN)(S)[3]
LR1142 (L)
SR1142 (S)
1133SO (S)
1132SO (S)
80 (L)
120–125 (S)
11.6 × 4.2
SR44 AG13/SG13
LR44/LR154
6135-99-792-8475 (NSN)(alkaline)
6135-99-651-3240 (NSN)(S)[3]
A76/S76/EPX76
157/303/357
LR1154 (L)
SR1154 (S)
1166A (L)
1107SO (S)
1131SOP (S)
110–150 (L)
170–200 (S)
11.6 × 5.4 Typical internal resistance: 8ohm
SR45 AG9/SG9
LR45
194/394
6135-99-782-4675 (NSN)(S)[3]
LR936 (L)
SR936 (S)
48 (L)
55–70 (S)
9.5 × 3.6
SR48 AG5/SG5
LR48
193/309/393
LR754 (L)
SR754 (S)
1136SO (S)
1137SO (S)
52 (L)
70 (S)
7.9 × 5.4
SR54 AG10/SG10
LR54
189/387/389/390
LR1130/SR1130
6135-99-796-0471 (NSN)(S)[3]
LR1131 (L)
SR1131 (S)
1138SO (S) 44–68 (L)
80–86 (S)
11.6 × 3.1
SR55 AG8/SG8
LR55
191/381/391
LR1120/SR1120
LR1121 (L)
SR1121 (S)
1160SO (S) 40–42 (L)
55–67 (S)
11.6 × 2.1
365,366,S16,608 SR1116SW   28-40[17] 11.6 x 1.65 1.55V
SR57 AG7/SG7
LR57
195/395/399
LR927/SR927
SR927W/GR927
6135-99-796-0471 (NSN)(S)[3]
LR926 (L)
SR926 (S)
116550 (S) 46 (L)
55–67 (S)
9.4 × 2.6
SR58 AG11/SG11
LR58
162/361/362
LR721 (L)
SR721 (S)
1158SO (S) 18–25 (L)
33–36 (S)
7.9 × 2.1
SR59 AG2/SG2
LR59
196/396/397
LR726 (L)
SR726 (S)
1163SO (S) 26 (L)
30 (S)
7.9 × 2.6
SR60 AG1/SG1
LR60
164/364
LR621 (L)
SR621 (S)
1175SO (S) 13 (L)
20 (S)
6.8 × 2.1
SR63 AG0/SG0
LR63
379
LR521 (L)
SR521 (S)
10 (L)
18 (S)
5.8 × 2.1
SR66 AG4/SG4
LR66
177/377
SR626SW
LR626 (L)
SR626 (S)
1176SO (S) 12–18 (L)
26 (S)
6.8 × 2.6
SR67 315 SR716 (S) 21 (S) 7.9 × 1.65
SR69 AG6/SG6
LR69
171/371
LR920/SR920
LR921 (L)
SR921 (S)
  30 (L)
55 (S)
9.5 × 2.1
SR516 SR516SW
317
LR516 (L)
SR516 (S)
  11 (S) 5.8 x 1.6
SR416 SR416SW
337
LR416 (L)
SR416 (S)
  8 (S) 4.8 x 1.6
LR932 LR932 (L)   40 (L) 9.3 × 3.2 Rarely used independently. 8 of these in series used in A23 battery.

Zinc air cells (hearing aid)

Miniature zinc-air batteries are button cells that use oxygen in air as a reactant and have very high capacity for their size. Each cell needs around 1 cubic centimetre of air per minute at a 10 mA discharge rate. These cells are commonly used in hearing aids. A sealing tab keeps air out of the cell in storage; a few weeks after breaking the seal the electrolyte will dry out and the battery becomes unusable, regardless of use. Nominal voltage on discharge is 1.2 volts.

Most
Common
Name
Other
Common
Names
IEC 60086
Name
ANSI/NEDA
Name
Typical Capacity
(mAh)
Dimensions
(mm)
Diameter x Height
Comments
5 AC5 PR63 7012ZD 33 5.8 × 2.5 Marked as "discontinued" in Energizer data sheet [18]
10 yellow tab PR70 7005ZD 91 5.8 × 3.6
13 orange tab PR48 7000ZD 280 7.9 × 5.4
312 brown tab
6135-99-752-3528 (NSN)[3]
PR41 7002ZD 160 7.9 × 3.6
675 blue tab PR44 7003ZD 600 11.6 × 5.4
AC41E PR43 7001Z 390 11.6 × 4.2 Discontinued

Round lithium-ion rechargeable

Lithium-ion rechargeable batteries are not interchangeable with primary types with different chemistry. Lithium-ion cells are made in various sizes, usually made into packs for portable equipment. All of these cylindrical cells have a nominal voltage around 3.7 volts, and have a positive terminal nub at one end and flat negative terminal at the other. Many types are available with an internal protection circuit to prevent over-discharge and short-circuit damage. Safe and economic recharging requires use of chargers specified for these cells. Popular applications include laptop battery packs and flashlights.

Some sizes of lithium primary cells have lithium-ion rechargeable equivalents.

Most common name Other common names IEC name ANSI/NEDA name Typical capacity (mAh) Dimensions (max)

Diameter x Length (mm)

Comments
10180 90 10 x 18
10280 200 10 x 28
10440 340 10 x 44 Same size as AAA cell.
14250 300 14 x 25 Same size as 1/2 AA cell.
14500[19] 700 14 x 50 Same size as AA cell.
14650 1600 14 x 65
15270 450-600 15 x 27 Substitute for CR2 primary lithium. 3V.
16340 500-1000 16 x 34 Alternate substitute for CR123A primary lithium[20]. Unprotected. (16 x 36, some protected versions[21]).
RCR123A 17340, R123, RCR123, Tenergy 30200[22] 750 17 x 34.5 Same size as, and substitute for, CR123 primary lithium for cameras and flashlights. Protected version.
17500[23] 1100 17.3 x 50 The same size as an A cell, and 1.5 times the length of a CR123A.
17670[24] 1250 17 x 67 2 times the length of a standard CR123A.
18350 700-1200 18 x 35 (nominal) [25].
18500[26] 1400 18.3 x 49.8
18650[27] 168A 2200–3100 18.6 x 65.2 This cell type is used in many laptop batteries and the Tesla Roadster and LED flashlights.[28]
19670 Protected 18650[29] 2200–3100 19 x 67 Correct designation of protected 18650.[30]
25500[31] 2500–5000 24.3 x 49.2 About the same size as a C cell.
32600[32] 3000–6000 32 x 61.9 About the same size as a D cell.

See also

References

  1. ^ a b David Linden, Thomas B. Reddy (ed). Handbook of Batteries, 3rd edition, McGraw-Hill, New York, 2002 ISBN 0-07-135978-8 chapter 4
  2. ^ Heinz Albert Kiehne, Battery technology handbook,CRC Press, 2003 ISBN 0-8247-4249-4, page 374
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y Defence Standards: 61 Series - Electrical Wire and Power
  4. ^ [1] INOBAT 2008 statistics.
  5. ^ http://data.energizer.com/PDFs/E146X.pdf
  6. ^ http://www.mahaenergy.com/store/viewItem.asp?idProduct=273
  7. ^ "Rechargeable N Size Battery - Robot Room". http://www.robotroom.com/NCell.html. Retrieved October 10, 2010. 
  8. ^ a b c d INOBAT 2008 statistics.
  9. ^ Thomas Roy Crompton Battery Reference Book 3rd edition , Newnes, 2000, ISBN 0-7506-4625-X, page 54-11
  10. ^ http://the-thompson-brown-family.co.uk/batteries/batteriesframe.htm Batteries
  11. ^ http://data.energizer.com/PDFs/2cr5.pdf
  12. ^ http://data.energizer.com/PDFs/223.pdf
  13. ^ http://data.energizer.com/PDFs/crv3.pdf
  14. ^ http://www.batteriesplusmore.ca/electronics.php Battery table retrieved 2010 Jan 13
  15. ^ 1 2 http://www.batteryship.com/htmlos/htmlos.cgi/batteryship/catalog.html?item=CR2320&model=IEC+BR2320 3]
  16. ^ IEC 60086-3 standard for watch batteries
  17. ^ 12
  18. ^ http://data.energizer.com/PDFs/ac5.pdf AC5 data sheet
  19. ^ [2] Datasheet for GP1450L70, confirms all data here. Retrieved 8th July 2011
  20. ^ [3] What are the differences between RCR123, R16340 and R17345 batteries? Retrieved 2nd August 2011
  21. ^ [4] 16340 Battery Warning!
  22. ^ http://www.tenergybattery.com/index.php?option=com_virtuemart&page=shop.product_details&flypage=shop.flypage&category_id=21&product_id=390&Itemid=1 Data sheet retrieved 2010 Nov 24
  23. ^ [5] Datasheet for GMB17500, confirms all data here. Retrieved 8th July 2011
  24. ^ [6] Datasheet for Panasonic CGR17670HC, confirms all data here. Retrieved 8th July 2011
  25. ^ [7] What are the differences between R17670, 18650 and R19670 batteries? Retrieved 9th August 2011
  26. ^ [8] Datasheet for GPB18500, confirms all data here. Retrieved 8th July 2011
  27. ^ [9] Datasheet for CGR18650DA, confirms all data here. Retrieved 8th July 2011
  28. ^ [10] What are the differences between R17670, 18650 and R19670 batteries? Retrieved 9th August 2011
  29. ^ [11] The Anatomy of a Protected Battery Retrieved 2nd August 2011
  30. ^ [12] What are the differences between R17670, 18650 and R19670 batteries? Retrieved 9th August 2011
  31. ^ [13] Datasheet for Saft VL25500-125, confirms all data here. Retrieved 8th July 2011
  32. ^ [14] Datasheet for Saft VL32600-125, confirms all data here. Retrieved 8th July 2011

External links